En probabilidad y estadística, una variable aleatoria o variable estocástica es una variable estadística cuyos valores se obtienen de mediciones en algún tipo de experimento aleatorio. Formalmente, una variable aleatoria es una función, que asigna eventos (p.e., los posibles resultados de tirar un dado dos veces: (1, 1), (1, 2), etc.) a números reales (p.e., su suma).
Los valores posibles de una variable aleatoria pueden representar los posibles resultados de un experimento aún no realizado, o los posibles valores de una cantidad cuyo valor actualmente existente es incierto (p.e., como resultado de medición incompleta o imprecisa). Intuitivamente, una variable aleatoria puede tomarse como una cantidad cuyo valor no es fijo pero puede tomar diferentes valores; una distribución de probabilidad se usa para describir la probabilidad de que se den los diferentes valores.
Las variables aleatorias suelen tomar valores reales, pero se pueden considerar valores aleatorios como valores lógicos, funciones... El término elemento aleatorio se utiliza para englobar todo ese tipo de conceptos relacionados. Un concepto relacionado es el de proceso estocástico, un conjunto de variables aleatorias ordenadas (habitualmente por orden o tiempo).
Definición de variable aleatoria
[editar]Concepto intuitivo
Informalmente una variable aleatoria puede concebirse como un valor numérico que está afectado por el azar. Dada una variable aleatoria no es posible conocer con certeza el valor que tomará esta al ser medida o determinada, aunque sí se conoce que existe una distribución de probabilidad asociada al conjunto de valores posibles. Por ejemplo, en una epidemia de cólera, se sabe que una persona cualquiera puede enfermar o no (suceso), pero no se sabe cual de los dos sucesos va a ocurrir. Solamente se puede decir que existe una probabilidad de que la persona enferme.
Para trabajar de manera sólida con variables aleatorias en general es necesario considerar un gran número de experimentos aleatorios, para su tratamiento estadístico, cuantificar los resultados de modo que se asigne un número real a cada uno de los resultados posibles del experimento. De este modo se establece una relación funcional entre elementos del espacio muestral asociado al experimento y números reales.
[editar]Definición formal
Una variable aleatoria (v.a.) X es una función real definida en el espacio muestral, Ω, asociado a un experimento aleatorio.1 2
La definición formal anterior involucra conceptos matemáticos sofisticados procedentes de la teoría de la medida, concretamente la noción de espacio de probabilidad.
Dado un espacio de probabilidad
y un espacio medible
, una aplicación
es una variable aleatoria si es una aplicación
-medible.




En la mayoría de los casos se toma como espacio medible de llegada el formado por los números reales junto con la σ-álgebra de Borel (el generado por la topología usual de
), quedando pues la definición de esta manera:

Dado un espacio de probabilidad
una variable aleatoria real es cualquier función
-medible donde
es la σ-álgebra boreliana.



[editar]Rango de una variable aleatoria
Se llama rango de una variable aleatoria X y lo denotaremos RX, a la imagen o rango de la función
, es decir, al conjunto de los valores reales que ésta puede tomar, según la aplicación X. Dicho de otro modo, el rango de una v.a. es el recorrido de la función por la que ésta queda definida:

Ejemplo
Supongamos que se lanzan dos monedas al aire. El espacio muestral, esto es, el conjunto de resultados elementales posibles asociado al experimento, es
,
donde (c representa "sale cara" y x, "sale cruz").
Podemos asignar entonces a cada suceso elemental del experimento el número de caras obtenidas. De este modo se definiría la variable aleatoria X como la función
dada por
El recorrido o rango de esta función, RX, es el conjunto
Caracterización de variables aleatorias
[editar]Tipos de variables aleatorias
Para comprender de una manera más amplia y rigurosa los tipos de variables, es necesario conocer la definición de conjunto discreto. Un conjunto es discreto si está formado por un número finito de elementos, o si sus elementos se pueden enumerar en secuencia de modo que haya un primer elemento, un segundo elemento, un tercer elemento, y así sucesivamente.5- Variable aleatoria discreta: una v.a. es discreta si su recorrido es un conjunto discreto. La variable del ejemplo anterior es discreta. Sus probabilidades se recogen en la función de cuantía(véanse las distribuciones de variable discreta).
- Variable aleatoria continua: una v.a. es continua si su recorrido no es un conjunto numerable. Intuitivamente esto significa que el conjunto de posibles valores de la variable abarca todo un intervalo de números reales. Por ejemplo, la variable que asigna la estatura a una persona extraída de una determinada población es una variable continua ya que, teóricamente, todo valor entre, pongamos por caso, 0 y 2,50 m, es posible.6 (véanse las distribuciones de variable continua)
- Variable aleatoria independiente: Supongamos que "X" e "Y" son variables aleatorias discretas. Si los eventos X = x / Y = y son variables aleatorias independientes. En tal caso: P(X = x, Y = y) = P( X = x) P ( Y = y).
- De manera equivalente: f(x,y) = f1(x).f2(y).
- Inversamente, si para todo "x" e "y" la función de probabilidad conjunta f(x,y) no puede expresarse sólo como el producto de una función de "x" por una función de "y" (denominadas funciones de probabilidad marginal de "X" e "Y" ), entonces "X" e "Y" son dependientes.
- Si "X" e "Y" son variables aleatorias continuas, decimos que son variables aleatorias independientes si los eventos "X ≤ x", e "Y ≤ y" y son eventos independientes para todo "x" e "y" .
- De manera equivalente: F(x,y) = F1(x).F2(y), donde F1(x) y F2(y) son las funciones de distribución (marginal) de "X" e "Y" respectivamente.
- Inversamente, "X" e "Y" son variables aleatorias dependientes si para todo "x" e "y" su función de distribución conjunta F(x,y) no puede expresarse como el producto de las funciones de distribución marginales de "X" e "Y".
- Para variables aleatorias independientes continuas, también es cierto que la función de densidad conjunta f(x,y)es el producto de las funciones densidad de probabilidad marginales de "X", f1(x), y de "Y", f2(y).